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The purpose of this study is to determine the seroprevalence and the associated risk factors to 
Mycobacterium avium subspecies paratuberculosis. A total of 4,487 serum samples were collected from 
cattle in 173 farms from different parts of Mexico. Information about potential risk factors and spatial 
location of the farms was obtained through a questionnaire to farm´ owners and by global positioning 
system (GPS) apparatus respectively. An enzyme-linked immunosorbant assay (ELISA) kit was used to 
detect the presence of antibodies against paratuberculosis (MAP). Maps showing areas of high risk of 
MAP and maps showing areas with environmental conditions for the presence of paratuberculosis were 
elaborated with Maxent. The overall prevalence of the disease was 5%. The higher seroprevalence was 
in family run systems (11.3%). The spatial analysis showed higher prevalence (6%) in the South Pacific 
region. Three factors had a significant relationship with prevalence of the disease: history of 
tuberculosis, grazing in open fields and belonging to the family run system.  
 
Key words: Mycobacterium, paratuberculosis, dairy cattle, seroprevalence, Mexico. 

 
 
INTRODUCTION 
 
Paratuberculosis (PTB), or Johne’s disease (JD), is a 
chronic, progressive, infectious granulomatous enteritis 
caused by Mycobacterium avium subspecies 
paratuberculosis (MAP), which affects ruminants, 
especially dairy cattle, and a variety of domestic species 
(Manning and Collins, 2001; Kudahl et al., 2007). 
Characteristic symptoms include: diarrhea, progressive 
weight loss and death in adult animals. MAP has been 

reported to survive milk pasteurization (Grant et al., 
2002), and has been related to Crohn’s disease in 
humans (Timms et al., 2012). The main route of infection 
with MAP is the fecal-oral route, but it can also be 
transmitted through colostrum (Streeter et al., 1995), and 
milk from subclinical or clinical infected cows (Streeter et 
al., 1995; Sweeney et al., 1992; Taylor et al., 1981). In 
utero, infection has also been reported  (Whittington   and
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Windsor, 2009). 

Clinical paratuberculosis has an important economic 
impact on the dairy industry; losses due to this disease in 
the dairy industry in the US have been estimated in 1.5 
billion dollars annually (Merkal et al., 1987). No data 
about the economic impact of the disease is available in 
Mexico. The reasons for such losses are: low milk 
production (Benedictus et al., 1987), large calving 
intervals (Abbas et al., 1983), low slaughter weights 
(Whitlock et al., 1985), shorter life expectancy, loss of 
potential breeding value, infertility and increased 
incidence of mastitis (Buergelt and Duncan, 1978). 
Efforts to treat the disease or to develop a vaccine have 
not been successful. Until an effective cure or prevention 
is found, early diagnosis and scientific management 
practices alone will help in protecting the animals against 
this disease. 

Johne’s disease has a worldwide distribution. The 
prevalence in some countries is as high as 40%, as is the 
case for the United States of America (Sánchez-
Villalobos et al., 2009), similar rates are reported in 
Canada (Sorensen et al., 2003). In cattle, it is endemic in 
The Netherlands, Austria, and Belgium, where the 
prevalence rate is 54, 7, and 41% respectively. In 
Europe, Sweden is the only country with a MAP-free 
status (Singh et al., 2008). In Australia, infection rates 
fluctuate between 9 and 22% (Sánchez-Villalobos et al., 
2009) respectively. In the south west of England, the 
mean seroprevalence is 7.1% (Woodbine et al., 2009).   

Latin America is not the exception; Argentina reports 
prevalence rates of 18.8% in dairy farms and 6.8% in 
beef farms. In Rio de Janeiro, Brazil, the prevalence is 
33%. In Venezuela 72% of the herds is infected 
(Sánchez-Villalobos et al., 2009). In Mexico, reports from 
different studies, usually involving small sample sizes, 
show a prevalence of about 30%, especially in dairy 
cattle.  

Therefore, the main objective of this study was to 
determine the seroprevalence of M. avium subspecies 
paratuberculosis in dairy cattle and the associated risk 
factors. 
 
 
MATERIALS AND METHODS 
 
The data 
 
Data came from a large cross-sectional study in 173 farms 
conducted between January, 2010 and December, 2012. The study 
involved farms from different parts of Mexico which are under three 
main systems of milk production prevalent in the country: intensive, 
family-run and double-purpose farms. Intensive and family-run 
farms have Holstein-Friesian cattle, double-purpose farms have 
mainly Bos indicus breeds, which are primarily used for calving and, 
as a secondary purpose, milk production.  The estimated sample 
size was about 3,500 animals, using a 10% hypothetical prevalence 
for brucellosis, 1% error and 95% confidence level. Even though 
the sample size estimated was 3, 500 animals, the final number of 
samples collected was 4,487. A stratified multistage sampling 
design was used. Considering that the population of dairy cattle is 
located   in   specific   regions,  each  region  was  considered  as  a 
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stratum in the first stage. In the second stage, states were selected 
within each stratum, and counties selected within each state. 
Counties were not randomly selected; instead, they were selected 
from a list of milk producing counties. Finally, due to the lack of a 
good sampling frame, convenience sampling was used to select 
herds and animals within herds. All sampling personnel were 
advised to select herds from different areas of each county which 
will form a representative sample. To reduce the total variance of 
sampling, the sampling fraction by stratum (region) was determined 
dividing the total number of samples by the total population 
(3,500/2,000 000=0.0019). Subsequently, to determine the number 
of animals sampled per stratum, the sample fraction was multiplied 
by the size of the population in each stratum. 
 
 
Blood samples 
 
 
Ten milliliters of blood were collected from each animal from the 
middle coccygeal vein with a 20-gauge, 1-in needle in a 10 ml 
serum-separator Vacutainer tube (Becton Dickinson and Company,  
Becton Dickinson Vacutainer Systems, Franklin lakes, NJ. 07417 to 
1885. USA). Antibodies against PTB were determined by Enzyme-
link-immunosorbent-assay (ELISA) kit (IDEXX Laboratories, Inc., 
Westbrook, ME, USA), using the protoplasmatic strain 3065 MAP 
(Martinez et al., 2012). 
 
 
Epidemiological information 
 
In order to collect epidemiological information, a questionnaire was 
administered to the owners of the herds to identify farm 
management practices and herd performance. The questionnaire 
included open items (any answer possible) and closed items 
(possible answers provided in the questionnaire) related to general 
characteristics of farms, such as size, breed and production, as well 
as target questions referring to potential risk factors for MAP 
transmission. 
 
 
Statistical analysis 
 
The statistical analysis was carried out in three phases. First, a 
univariate descriptive analysis was performed throughout 
frequencies and descriptive statistics, followed by a bivariate 
analysis to identify those variables potentially associated with MAP 
prevalence. Finally, all variables with a p value ≤ 0.20 were 
considered for a multivariate logistic regression model to obtain 
adjusted odds ratios. Analysis was performed with Epi info 
tm7.1.0.6. (Centers for Disease Control and Prevention) and SPSS 
(SPSS Inc.233 South Wacker Drive, 11th Floor, Chicago, IL 60606-
6412 EE.UU).  
 
 

Spatial information  
 
All farms were spatially located using a spatial location apparatus 
(GPS). This information was used to estimate risk areas of the 
disease throughout geostatistical modeling (kriging). These 
analyses were performed with ArcView from ArcGis 10 (ESRI, 
Redlands, CA). 
 
 

Ecological niche modeling 
 
In order to determine a relationship between environmental 
variables from BIOCLIM (http://www.worldclim.org) and the 
presence of MAP, an ecological niche modeling with maxent was 
performed. Maps showing predicted relative suitability for the
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Table 1. Prevalence of paratuberculosis in cattle in Mexican dairy farms, by 
system of production. 
 

System of production Positive animals Total Prevalence (%) 

Intensive 105 2303 4.6 
Dual-purpose 63 1617 3.9 
Family-run 64 565 11.3 
Total 232 4485 5.2 

 
 
 

Table 2. Prevalence of paratuberculosis in cattle in Mexican dairy farms by state. 
 

State Positive animals Total Average prevalence (%) Number of herds Prevalence range (%) 

Intensive      
Aguascalientes 13 147 9 7 0-29 
Chihuahua 13 714 2 15 0-7 
Coahuila 11 202 5 6 0-12 
Durango 3 222 1 7 0-10 
Guanajuato 14 147 10 4 2-22 
Hidalgo 36 379 9 16 0-50 
Querétaro 15 492 3 17 0-17 
      
Family-run      
Jalisco 64 565 11 24 0-42 

   
Dual-purpose      
Chiapas 6 509 1 20 0-14 
Sinaloa 18 319 6 10 0-18 
Veracruz 39 791 5 47 0-25 
Total 232 4487 5 173 0-50 

 
 
 
presence of cases were elaborated. Twenty-five percent of the 
herds were randomly selected to test the model accuracy. 
Environmental data used by maxent were: temperature and 
precipitation, and the 19 environmental variables from BIOCLIM 
with 2.5 min of resolution, converted to a common projection.  
 
 
RESULTS 
 
The overall herd seroprevalence of M. paratuberculosis in 
dairy cattle in Mexico was 48%, and the animal 
seroprevalence was 5% (range 0 to 50%). The highest 
animal prevalence was observed in the family-run system 
(11.3%), compared to the intensive (4.6%) and the 
double-purpose (3.9%) systems (Table 1). Results show 
that prevalence varies from state to state, from 1 to 11%, 
and in herds within a state, from 0 to 50% (Table 2). The 
highest prevalence was found in some herds in the State 
of Hidalgo (50%) which has a high density of dairy cattle 
(25000 dairy cattle) in 102 herds in the production 
complex "Tizayuca". This complex is characterized by the 
closeness of the farms, origin of replacement stock, 
national and international. According to herd size, 
prevalence was higher in herds of 200 to 300 cows (9.5%)  

and in farms using raw milk to feed calves (7.7%).  
In order to identify risk factors associated to 

prevalence, a logistic regression analysis was performed. 
Very few factors showed significant correlation (P<0.05); 
animals with positive serology to tuberculosis, OR=2.9 
(CI95% 1.9 to 4.2), animals grazing in open fields, OR=2.1 
(CI95% 1.1 to 4.2), and the production system: OR=2.4 
(CI95% 1.2 to 4.8) for dual-purpose and OR=4.5 (CI95% 3.1 
to 6.7) in family-run systems (Table 3). 

The spatial analysis to establish risk areas of 
paratuberculosis in dairy cattle showed that the highest 
risk is in the South Pacific region (over 6%), where the 
family-run system is located. In the Gulf of Mexico and 
central north regions, the prevalence is rather low, 0 to 
6% (Figure 1). It is worth mentioning that the Northwest 
and Southeast areas of the country were not sampled. 
Therefore, prediction does not cover the whole country.  

Figure 2, shows the ecological niche modeling 
(maxent) map with predicted relative habitat suitability for 
the presence of MAP. Habitat suitability increases from 
blue to yellow to red. The climatic variable with the 
highest prediction value in the model was seasonal 
temperature. The zones with favorable climatic conditions



Milián-Suazo et al.         305 
 
 
 

Table 3. Adjusted odds ratio for risk factors associated with the prevalence of dairy 
cattle paratuberculosis in Mexican dairy herds. 
 

Risk factor Category P OR 
95% CI 

Lower Upper 

History of tuberculosis No - - - - 
 Yes 0.000 2.9 1.9 4.2 
      
Feeding Concentrates - - - - 
 Open field Grazing 0.026 2.1 1.1 4.2 
      
Production system Intensive - - - - 
 Double purpose 0.017 2.4 1.2 4.8 
 Family run 0.000 4.5 3.1 6.7 

 
 
 

 
 
Figure 1. Predicted risk of paratuberculosis in dairy cattle in Mexico. 

 
 
 
such as temperature and humidity for the survival of the 
organisms show highest incidence. These areas include 
Sinaloa, a region formed by parts of Jalisco, Guanajuato 
and Aguascalientes, and La Laguna, which includes parts 
of Coahuila and Durango, and some parts of Chiapas.   
 
 
DISCUSSION 
 
The average prevalence rate of paratuberculosis in cattle 
used for milk  production  in  Mexico  was  5%.  This  pre- 

valence rate is similar to that obtained in some other 
parts of the world; 5% in the State of New York in the US 
(Obasanjo et al., 1997), 5.8% in England (Cetinkaya et 
al., 1997), but much lower than that reported in Michigan, 
also in the US (66%) (Johnson-Ifearulundu and Kaneene, 
1998) and Alberta, Canada, 9.1% (Scott et al., 2006). In 
Latin American and Caribbean countries, the prevalence 
rate ranges from 16% in cattle to 4.3 in sheep and goats 
(Fernández-Silva et al., 2014). 

Earlier reports of the prevalence of paratuberculosis 
varies: Salman  et  al.  (1990)  reported  a  prevalence  of 
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Figure 2. Predicted potential suitable areas for the presence of paratuberculosis in dairy cattle in 
Mexico. Areas in red indicate favorable conditions. 

 
 
 
46% in 8,100 dairy cattle from 110 premises in Baja 
California. Chávez et al. (2004) reported a low 
prevalence of 13% in fighting bulls in Veracruz (Morales, 
1994) while prevalence rates in dairy cattle and dual 
purpose cattle in Guanajuato were 30 and 25%, 
respectively (Santillán et al., 2003). An earlier report by 
Miranda (2005) in the Tizayuca dairy complex in the state 
of Hidalgo, indicated a prevalence rate of 8.8%, which is 
much lower than that shown in this study. The variation in 
the prevalence rate could be attributed to the low sample 
size in the earlier study as compared to this study survey.  

In general, the main differences between this results 
and those from other studies are the sample size and the 
number of herds included in the study. Most studies in 
Mexico are based on low sample sizes and smaller 
geographic areas, whereas this study involved 173 herds 
from 11 states, including cattle from three different milk 
production systems. The study did not randomize the 
sample, and included a more representative population in 
comparison with earlier studies.   

In this study, the highest prevalence was found in 
family-run systems (11.3%). This could be a 
consequence of the minimal use of technical services, 
such as veterinary support and technology. In addition, in 
this system cows are kept in production for longer periods 
of time (4.5 to 7 years) as opposed to the intensive 
system; therefore, there is a higher chance for developing 
this chronic disease. 

The low prevalence (4.6%) in the intensive production 
system could be the result of the high replacement rate in 
this population, the average life span of a cow in this 
system is about 3.5 years. Cattle in the dual purpose 
system had a prevalence of 3.9%. The low prevalence 

rate in this area could be attributed to the low density of 
cattle per Km and also the tropical conditions prevailing in 
this area may be detrimental to the survival of the 
organism.   

Results of the maxent model are shown in Figure 2. 
Habitat suitability for presence of M. paratuberculosis is 
observed in wide areas of the national territory, especially 
in the tropical, central and central north areas. However, 
maxent is a model that assumes random distribution of 
species, and in the present study the dairy herds are not 
randomly distributed. Therefore, this map should be 
taken with caution. The highest predicted habitat 
suitability in our study could be more the result of the 
location of human populations than environmental 
variables per se. 

The ability to rapidly diagnose and identify the 
causative agent are critical for combating diseases and 
stopping epidemics (Wadhwa et al., 2012; Kaur et al., 
2013). Recent technological developments have led to 
the proliferation of new and improved diagnostic tests 
that hold promise for a better management and control of 
infectious diseases (Wadhwa et al., 2014). New 
technologies such as microfluidics (Wadhwa et al., 2012) 
and “Lab-on- Chip” (Liu et al., 2011) are examples of 
promising new technologies with the potential to be used 
as a laboratory-free diagnostic devices for infectious 
diseases in animal husbandry.   

This study indicated that the prevalence of MAP in 
dairy cattle in Mexico is low compared to previous reports 
either from Mexico or from our neighboring and European 
countries. Therefore, a practical recommendation for 
national authorities in animal health is to take actions now 
to  reduce,  and  eventually  eliminate,  this  disease  from 



 
 
 
 
dairy cattle population before it spreads and prevalence 
increase. 
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A Bayesian approach (BA) is well-used in veterinary medicine as it has been used for inductive 
reasoning regarding interventions, treatments and diagnoses. The objectives of the current article were 
(1) to examine the state of BA used for inductive reasoning in veterinary medical problems and (2) to 
illustrate how veterinarians update states of knowledge (prior clinical experience) to a new state of 
knowledge (posterior clinical experience). When veterinarians are managing patients, they start with 
their inference from history and a clinical sign to an underlying cause using inductive reasoning. In 
updating from a prior clinical experience to a posterior clinical experience, the strength of evidence 
plays an important role. Nevertheless, if an experienced veterinarian uses his/her previous experience 
of a current patient’s clinical signs, he/she may not move from the prior clinical experience to a 
posterior clinical experience and is less likely to change his/her treatment decisions. In comparison, for 
a novice veterinarian who would have less prior clinical experiences with given clinical signs, his/her 
prior clinical experience would easily be changed to a posterior clinical experience after taking history 
and physical examination. In brief, the more prior clinical experience a veterinarian has, the more rapid 
a diagnosis is made. The stronger the evidence, the more precise inference will be. 
 
Key words: Bayesian, inference, reasoning, inductive, veterinarian. 

 
 
INTRODUCTION 
 
In clinical practice, experience is an unmeasured aspect 
in making a diagnosis. To make a diagnosis, 

veterinarians imply the association from cause to effect. 
For example, if pigs were infected with influenza A virus
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(IAV), they may present with coughing as their primary 
clinical sign, or if dogs are exposed to canine parvovirus 
(CPV), they may present with bloody diarrhea. On the 
other hand, when managing most patients, veterinarians 
start their inference from a clinical sign to an underlying 
cause. The former reasoning (from cause to effect) 
pathway cannot be made since veterinarians rarely know 
the true cause of a disease. They have to reason in an 
opposite direction (from clinical sign to cause). In the 
statistical perspective, the former pathway of thinking is 
called “deductive reasoning” while the latter pathway 
(from clinical sign to cause) is called “inductive 
reasoning” (Cockcroft, 2008). 

Since the 1970s, inductive reasoning has been 
employed in clinical veterinary medicine (Lorenz, 2009). It 
was originally called, “pattern recognition” and more 
recently “problem-oriented approach (POA)” and 
“evidence-based veterinary medicine (EBVM)”. In the 
1980s, the term “evidence-based medicine” (EBM) was 
minted at McMaster Medical School in Canada 
(Rosenberg and Donald, 1995). EBM is defined as “the 
conscientious, explicit, and judicious use of the current 
best evidence in making decisions about the care of 
individual patients” (Sackett et al., 1996). EBM can be 
practiced in any situation where there is doubt about an 
aspect of clinical diagnosis, or prognosis (Rosenberg and 
Donald, 1995). In veterinary medicine, EBVM would be 
defined similarly as it uses the current best evidence to 
make clinical decisions concerning the care for animal 
patients. EBVM has been described as “just in time 
learning (as opposed to just in case learning), science 
into practice or from publication to patient”  (Cockcroft, 
2008). 

The veterinarian uses all of the information collected 
from evidence, such as signalment, patient history, 
physical examination and laboratory results to answer the 
question, “What is the cause(s) of the problem that is 
associated with the clinical presentation (that is, disease 
effect)?” From a statistical point of view, the veterinarian 
is answering the question, “What is the probability of a 
potential cause?” For instance, the probability of classical 
swine fever (CSF) in coughing pigs in the United States 
(US) may be near zero, since CSF is no longer in the US 
and will therefore be excluded from the differential 
diagnosis. Similarly, the probability that dog with bloody 
diarrhea is infected with CPV is near zero due to the low 
prevalence of CPV in the US; therefore, CPV will be 
removed from the differential diagnosis. This type of 
probability is called “inverse probability”, which is different 
from the probability (direct probability) of having a sign if 
an animal is exposed to the agent (Holland, 1986). 

Inverse probability is typically used as a basis for 
making inductively statistical inference and finding the 
“probability of causes” and future events derived from a 
past event (starting with the conclusion desired or 
desirable proposition and seeking for premises which 
make it true or probable) (Dale, 1999;  Hald,  1998).  It  is 
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 “inverse” because it involves inferring backwards from 
the present day to the past or “from effects to causes” 
(Fienberg, 2006). The term "inverse probability" is also 
known as the “Bayesian approach (BA)" (Aldrich, 2008; 
Bayes and Price, 1763; Fienberg, 2006; Stigler, 1986). 

In clinical veterinary medicine, veterinarians always 
deal with a rapidly changing body of evidence obtained 
from physical examination, patient history and laboratory 
results. When new evidence is uncovered, a 
veterinarian’s clinical decisions may be changed as well 
as the lists of differential diagnoses will be reduced. A 
utility of BA for veterinary diagnostic test has been well-
addressed elsewhere (Bonde et al., 2010; Branscum et 
al., 2005; Gardner, 2002; Greiner and Gardner, 2000; 
Paul et al., 2013; Toft et al., 2005). Therefore, the 
objectives of the current article were to examine the state 
of BA used for inductive reasoning in veterinary medical 
problems and to illustrate how veterinarians update 
states of knowledge (prior clinical experience) to a new 
state of knowledge (posterior clinical experience).  
 
 
A BAYESIAN APPROACH 
 
A Bayesian approach is a statistical method of the 
conditional distribution of parameters and unobserved 
evidence, given the observed evidence (Gelman, 2008). 
It is considered as the natural statistical framework for 
both EBM and EBVM in order to make decisions that 
incorporate an integrated summary of the available 
evidence and associated uncertainty (Ashby and Smith, 
2000). It is a more natural formalization of the normal 
scientific process of evaluating evidence (Dunson, 2001), 
integrating and synthesizing EBM in a systematic way 
(Ashby and Smith, 2000). It provides a common 
framework for problem solving and improving 
communication and understanding between owners and 
their animals from different backgrounds (prior 
experience) (Rosenberg and Donald, 1995). It is used to 
integrate individual clinical expertise (prior clinical 
experience) with the best available external clinical 
evidence from systematic research (Sackett et al., 1996). 
It is a synthesizing of the available external clinical 
evidence using Bayesian meta-analysis (Ashby and 
Smith, 2000). In addition, it can gauge the strength of 
prior clinical experience by evaluating whether evidence 
can dominate the prior experience or not (Greenland, 
2006). It has been shown that a major change of prior 
clinical experience would require solid clinical evidence 
and then clinicians will logically update their prior clinical 
experience to updated clinical experience (Higgins et al., 
2014). 

A Bayesian approach was independently developed by 
Tomas Bayes and Pierre-Simon Laplace over 300 years 
ago (Aldrich, 2008; Bayes and Price, 1763; Fienberg, 
2006; Stigler, 1986). However, the fundamentals of BA 
have   been  followed  by  the  Laplace-Jeffreys  objective 
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school, with additional modern refinements (Berger, 
2006).  The influence of BA can be seen in mathematics, 
statistics, computer science, bioinformatics, economics, 
physics, ecosystem, parasitology, and epidemiology as 
well as in human and veterinary medicine (Ashby and 
Smith, 2000; Basáñez et al., 2004; Dowd and Meyer, 
2003; Fienberg, 2006; Gardner, 2002). A classic example 
of applying BA in order to make inductive reasoning from 
an effect to a cause is during 1855 to 1865 in London, 
England, where John Snow had used BA as his inductive 
reasoning to scientifically convince audiences that a 
source of cholera transmission was from a private water 
supplier company (Koch and Denike, 2006).  
 
 
Components of a Bayesian approach  
 
A Bayesian approach comprises three mathematical 
terms: (i) evidence1, “p(x)” (a.k.a. the marginal likelihood, 
or the probability of evidence), (ii) the prior experience2, 
“p(θ)” and (iii) strength of evidence3, “p(x|θ)” (a.k.a. 
likelihood of evidence given a hypothesis). The posterior 
experience, “p(θ|x)4” (a.k.a. updated posterior experience 
from prior experience after having seen the evidence) is 
equal to the product of prior experience times strength of 
evidence divided by the evidence. Mathematically, it is 
written as: 
 

 

 
Simply, the posterior experience is proportional to the 
strength of the new evidence times prior experience 
(Higgins et al., 2012b, 2014). To further illustrate this, we 
will use an example of coughing pigs, where the posterior 
experience was reversely inferred from the strength of 
the new evidence and the prior experience. 
 
 
Example: Coughing pigs 
 
A veterinarian observes coughing pigs (evidence) and 
wishes to make a diagnosis (inference) by asking the 
question, “Is coughing in pigs caused by IAV infection?” 
He/she needs to inductively infer the cause from a 
posterior clinical experience (posterior probability) as 
shown in Figure 1. 

However, the coughing could be caused by multiple 
pathogens including classical swine fever, 
metastrongylus, mycoplasma hyopneumoniae, porcine 
respiratory coronavirus, classical swine fever virus, 
porcine   circovirus   type  2  virus,  porcine  reproductive,  
 

                                                            
1 “x” is data that has been  observed. 
2 “θ” is a prior clinical experience about a disease. 
3 “x|θ” is data that have been observed based on a prior clinical experience. 
4 “θ|x” is a potential disease after having seen the data. 

 
 
 
 
respiratory syndrome (PRRSv) virus, or IAV, etc. 
(Zimmerman et al., 2012) (Figure 2). 

From the Bayesian notation, the theorem is applied to 
the inference of coughing in pigs caused by IAV infection 
written as: 
 

 

 
The denominator is called the “probability of evidence” of 
coughing event (marginal likelihood). The Bayesian 
terms, notations and definitions were detailed in Table 1.  

Figure 3 numerically illustrates BA (inverse probability) 
pathway for diagnosing coughing pigs. Based on 
previous experience (prior clinical experience), the 
veterinarian may expect that 29% of coughing cases are 
caused by IAV infection, even though multiple swine 
pathogens can cause some degree of coughing (Choi et 
al., 2002; Olsen et al., 2000). While the prior knowledge 
may or may not be accurate, the prior clinical experience 
is useful to estimate such a percentage when there is 
lack of clinical information and a need to make a decision 
for clinical intervention (Higgins et al., 2012a). A 
Bayesian approach allows the veterinarian to update the 
probability of IAV infection by obtaining new information 
given his previous knowledge and the strength of 
evidence . If the probability of IAV 

infected pigs having coughing as a clinical sign, 
, is for example 0.3, the posterior 

clinical experience, , is 0.17. The 

calculation is illustrated in Figure 3. As BA measures a 
degree of prior clinical experience (hypothesis), from 
such posterior experience, it is implied from his/her 
clinical experience that there is a probability of 0.17 that 
those coughing pigs have IAV infection. Therefore, 
he/she has less confidence (low probability) concerning 
his/her prior clinical experience after he/she has had new 
evidence. In other words, if weak evidence is found, the 
prior experience stands; when moderate evidence is 
found, the prior clinical experience and the new evidence 
can be combined, modifying the moderate posterior 
clinical experience. If strong evidence is uncovered to 
discredit the prior clinical experience, this modifies the 
prior clinical experience, which changes intervention 
strategies (strong posterior clinical experience). A major 
change of prior clinical experience would require solid 
clinical evidence to update prior clinical experience to 
posterior clinical experience (Higgins et al., 2014). 
However, it is unlikely to be sufficient to warrant an 
intervention when using only prior clinical experience for 
implementing an intervention. 

There is first-rate and fallacious evidence for guiding 
decisions of intervention. For any evidence, we also need 
to estimate the probability that first-rate evidence is 
obtained from clinical examination or diagnostic results. 
Thus, the definition of the observed first-rate  evidence  is  
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Table 1. Representation of the Bayesian terms, notations and definitions related to an example of influenza A virus (IAV) infection. 
  

Bayesian term Notation Definition 

Prior clinical experience 
 

Probability that pigs have IAV infection (prevalence) 

The strength of evidence Probability that IAV infected pigs are coughing as a clinical sign 

- 
 

Probability that pigs negative to IAV infection have coughing as a clinical 
sign 

- 
 

Probability that pigs have no IAV infection 

Posterior clinical 
experience  

Probability that coughing is caused by IAV infection 

 
 
 

 
 
Figure 1. The representation of inductive inference from posterior clinical experience posterior clinical 
experience (posterior probability). 

 
 
 

 
 
Figure 2. The processes of deduction (from diseases to observed clinical signs) and induction (from observed clinical 
signs to diseases) used in veterinary inference with an example of partially-selected swine diseases. 

 
 
 
useful in the context of diagnosing disease and making 
an intervention decision. A simple approach may be to 

increase the sample size to strengthen the evidence 
given   the    prior    experience.  Consider    the  following  
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Figure 3. The calculation using Bayes’ theorem for inductive inference processes from coughing 
to influenza A virus infection. 

 
 
 
examples; an inexperienced veterinarian is monitoring a 
healthy sow herd (negative sow herd) for H1N1-IAV using 
an ELISA test kit with the test specificity = 99.7% (95% 
CI: 99.5–100%). Randomly, 5 sows were tested at once 
and one is positive, “p(x)”. Given the prior clinical 
experience “p(θ)” and inductive thinking, the one positive 
is questioned. He/she is unsure if one positive sample 
represents 20% (1/5), “p(θ|x)” being the strength of 
evidence of prevalence of H1N1-IAV given what is 
previously known (that is, the prevalence of IAV was 29% 
with 13% SD (Choi et al., 2002; Olsen et al., 2000), by 
prior clinical experience of H1N1-IAV prevalence in US 
swine herd) (Figure 4). If 10 more samples were 
analyzed with 2 positive samples, or 20 samples with 3 

positive samples, strength of evidence “p(x|θ)” will 
increase and then can create the posterior clinical 
experience p(θ|x).” Based on the first-rate evidence, the 
prior clinical experience will change from 29% to the 
posterior clinical experience of 20% prevalence (the most 
likely H1N-IAV prevalence), and thereby the veterinarian 
has learned something new. With a sample size of 20, 
the confidence in the posterior clinical experience and the 
precision about the estimate relatively increases as 
compared to the prior clinical experience, represented by 
narrower credible interval (confidence interval used in 
BA) is as shown in Figure 5. By choosing narrower 
credible intervals, inference and decision-making are 
better served, compared to chance (Poole, 2001). More 
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Figure 4. The distribution for prior clinical experience of an inexperienced veterinarian regarding prevalence of H1N1- influenza A virus 
in the United States swine herd (a horizontal axis is the prevalence with 29% most likely and standard deviation of 13%). 

 
 
 

 
 
Figure 5. The represent of increasing strength of evidence as probabilistic graph using Beta-binomial model with 1, 2 and 3 
positive samples out of 5, 10, 20 total samples, respectively. 

 
 
 
precision (narrower credible interval) in the posterior 
clinical experience is the sum of precisions in the two 
sources of information (the strength of evidence and the 
prior clinical experience). The combined strength of these 
two sources of information lead to increasing precisions 
in understanding of evidence (Carlin and Louis, 2008). 
With more prior clinical experience, the veterinarian’s 
decision regarding clinical intervention or treatment will 

be more precise. Similarly, as the veterinarian finds 
stronger evidence, his/her decision regarding clinical 
intervention or treatment will also be more precise. 

Based on numerical example (Figure 3), it is important 
to note that the inferences from deductive and inductive 
reasoning are not equal (Poole, 2001). The inference 
from deductive reasoning, “p(x|θ)”, had the probability of 
0.30 that  IAV  infected   pigs  would  be  coughing  as  an 
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observed clinical sign. On the other hand, that from 
inductive reasoning, “p(θ|x)”, had the probability of 0.17 
that coughing in pigs was caused by IAV infection. It is 
important to elucidate that performing statistical inference 
as deductive reasoning (frequentist) and as inductive 
reasoning (Bayesian) can end up with different 
conclusions. This is because the methods are answering 
different questions of making inference, and also both 
depict the opposite direction of causal models (Fienberg, 
2006). However, if very strong evidence “p(x|θ)” has been 
found or theoretically when samples sizes is large (as  

) no matter what direction of a causal model is 

being made, both inductive and deductive inference will 
be identical (Geyer, 2012). 
 
 
Example: Dog with pancytopenia 
 
A young vaccinated dog is admitted to the small animal 
teaching hospital with a problem of pancytopenia, a 
decrease in the number of platelets, and red and white 
blood cells. The veterinarian investigates pancytopenia 
from signalment to identify a probable cause of 
pancytopenia. However, if the veterinarian uses 
deductive reasoning of making an inference, he has to 
use a number of tests to check each body system, which 
might cause pancytopenia. In contrast, if the veterinarian 
applies BA of making an inference, he/she will start from 
his/her prior clinical experience and then update that 
posterior clinical experience by accumulating new 
evidence (information) from history taking, physical 
examination and diagnostic results. 

Starting from the prior clinical experience, a 
veterinarian would ask whether the dog has been 
showing diarrhea or vomiting. If the patient’s history 
revealed no exposure to radiation, toxins or medications 
that could reduce the numbers of platelets, and red and 
white blood cells, from history taking and prior clinical 
experience, he/she would then update his/her posterior 
clinical experience (posterior distribution) using BA. The 
cause of pancytopenia may be infectious including 
parvovirus, canine distemper or ehrlichia infection. 
He/she would like to have stronger evidence (than from 
taking patient’s history) to update his/her prior clinical 
knowledge of infectious diseases causing pancytopenia 
and also would like to coalesce evidence from the past 
concerning whether the patient has been showing 
diarrhea or vomiting. He/she continues to investigate 
more evidence using signalment, history and physical 
examination in order to increase the precision of the 
inference.  

The broad category of infectious diseases is narrowed 
down to which one of the three infectious diseases would 
be a primary cause of pancytopenia with some certain 
probability. It is found that the patient has not had 
diarrhea or vomiting, the most likely cause of 
pancytopenia  would  be  chronic  ehrlichiosis  with  some  

 
 
 
 
degree of certainty. To have stronger evidence, the 
patient’s serum is tested using a specific diagnostic test- 
ImmunoComb® Canine Ehrlichia Antibody Test Kit 
(Biogal Galed Lab., Israel). If the diagnostic test was 
positive, following Bayesian reasoning, a feasible cause 
of pancytopenia of the young dog patient may be chronic  
ehrlichiosis with some certain probability relying on 
veterinarian’s prior clinical experience of knowing 
Ehrlichia canis prevalence (Davies and Shell, 2002; 
Singla et al., 2011 ). 

As a veterinary diagnostician, one prefers to make an 
inference of the serological positive result if such a result 
is truly positive and truly caused by a chronic E. canis 
infection. The true positive result is simply measured by 
the sensitivity of the ELISA kit. However, making 
inference that the serological positive result is truly 
caused by E. canis infection requires BA (3 points). In 
statistical terms, what is the probability that the 
serological positive test result would really be caused by 
E. canis infection? This is the mathematical way of 
incorporating the serological evidence accompanied with 
prior clinical experience concerning the previous 
prevalence of E. canis. One then updates the estimate of 
how likely is the serological positive test caused by E. 
canis infection (posterior clinical experience). This result 
is known as the predictive value of the test. 
Subsequently, the veterinarian updates the posterior 
clinical experience by making inference of how likely is 
pancytopenia caused by E. canis infection.  
 
 
HETEROGENEITY OF PRIOR CLINICAL EXPERIENCE 
 
Veterinarians’ prior clinical experiences are 
heterogeneous. They range from being pessimistic to 
being enthusiastic (Higgins et al., 2014). Therefore, their 
clinical (posterior) expectations would be different. The 
strength of evidence needed concerning clinical 
expectations for them to agree with each other would 
also be different. Thus, two veterinarians that are 
different in experiences may provide a different decision 
for giving treatment options. The evidence will provide a 
factual basis for the decision, which will dictate the 
patient’s care (Rosenberg and Donald, 1995). 

When we consider the BA notation, BA has three terms 
in itself: prior clinical experience “p(θ)”, evidence “p(x)” 
and strength of evidence “p(x|θ)”. If two veterinarians 
disagree about a treatment option, they are disagreeing 
based on one of these three terms. If a veterinarian 
uncovers the same evidence, for example, the positive 
serologic test of E. canis, an experienced veterinarian 
with strong belief in his/her prior clinical experience may 
think the result is a false positive because he has seen 
similar cases (based on his prior clinical experience). 
Given his prior clinical experience, stronger evidence is 
needed, “p(x|θ)”, to update his posterior clinical 
experience. For a veterinarian with little experience, 
serological evidence may be sufficient  given  the  lack  of  



 
 
 
 
his/her prior clinical experience to update his posterior 
clinical experience. One, then, treats the patient with 
Doxycycline. No matter the result of the treatment to the 
dog patient (improving, stable or worsening 
pancytopenia), the veterinarian will learn from this 
experience. A Bayesian approach, however, is a 
mathematical way to learn from past experience and 
measure the strength of evidence given a prior clinical 
experience “p(x|θ)” (Ashby and Smith, 2000). 

If experienced and inexperienced veterinarians 
understand BA, they can focus on the area of 
disagreement (the prior clinical experience or weak 
evidence) and resolve the disagreement quicker. If a 
veterinarian is not using BA for diagnosing the patient, 
the patient may be subject to additional medical tests and 
unnecessary procedures. For instance, the patient may 
be evaluated for drugs and toxins depressing bone-
marrow activity, or tested for parvovirus or canine 
distemper viral infection (Davies and Shell, 2002). 
 
 
Evidence 
 
What kind of evidence is useful and where does the 
strength of evidence originate? Strength of evidence may 
come from the number of patients (sample size) since as 
the samples size increases (as numerically showed 
previously), the Bayesian point  and interval estimates 
will be driven more by the observed data and less by the 
prior clinical experience (Dunson, 2001). However, a 
Bayesian approach does not require a large number of 
samples but sequential analysis (the number of bits of 
information from the same patient) (Berger, 2006). For 
example, the strength of evidence increases as 
veterinarians make inferences based on new evidence 
obtained from history taking, physical examination and 
then the diagnostic serological test result. A Bayesian 
approach is remarkable not only in that it tells us what is 
and is not good evidence, but it helps us to quantify how 
strong the evidence is. A Bayesian approach tells us how 
much veterinarians should update their clinical 
experience or how much they should change their 
expectation when new evidence becomes available.  

A Bayesian approach distinguishes between weak 
evidence and strong evidence. If the posterior clinical 
experience is very different from the prior clinical 
experience, something has been learned, and if posterior 
clinical experience is the same as the prior clinical 
experience, strength of evidence (useful information 
contented) is low. In many circumstances, a veterinarian 
finds very strong evidence.  

Evidence that is sufficiently strong will permit a novice 
to make a discussion concerning clinical interventions or 
treatments with the confidence and precision as similar 
as an experienced veterinarian. Statistically speaking, 
this type of circumstance is called “a likelihood dominates 
a prior” (Carlin and Louis, 2008). Often, ones tend to 
believe   results  that  support  their   preconceptions  and  
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disbelieve contradicting results (Gelman, 2008). 
Veterinary clinical decisions need to be supported by 
evidence because the evidence lets veterinarians decide 
whether an intervention or treatment can be reliable 
(Rosenberg and Donald, 1995). Therefore, appraising 
evidence is crucial. 
 
 
CONCLUSION 
 
In this article, particular attention has been paid to 
examine the state of BA used for inductive reasoning in 
veterinary medical problems and to illustrate how 
veterinarians update states of knowledge, not focusing on 
a utility of BA in veterinary diagnostic test. A Bayesian 
approach is considered to be the natural framework of 
thinking in veterinary medicine. Pattern recognition and 
problem-based approach are based on this kind of 
thinking, although some veterinarians may not realize 
that they are using BA when making an inductive 
reasoning (inverse probability). 

Animals are not able to speak and provide limited 
information to a veterinarian. The veterinarian has to 
gather information from signalment, history, physical 
examination and laboratory results. In making decisions 
to treat a particular disease, there are relevant quantities 
or outcomes the veterinarian has observed or recorded 
and other relevant quantities or outcomes the 
veterinarian has not yet observed or recorded, and all are 
therefore uncertain. 

We have demonstrated that veterinarian’s physical 
examinations and history taking are the way of gathering 
information incorporating the prior clinical experience out-
flowing to posterior clinical experience to make a clinical 
decision. Also, we have emphasized that veterinarian, 
whether they know it or not, are always using BA to 
update their posterior clinical experience by starting from 
their prior clinical experience. Some veterinarians may 
have a different prior clinical knowledge based on their 
previous experience. However, as evidence strengthens, 
their posterior clinical experiences are updated to meet 
clinical agreement. 

No matter whether we call this learning process of 
solving problems from the present to the past, in reality, 
the data is meaningless by itself without having gone 
through thought processes (statistical modeling, or 
reasoning) incorporating previously observed information 
(prior experience) to synthesize a conclusion (posterior 
clinical experience).  

However, the conclusion could be changed if we have 
more information and evidence. Veterinarian’s diagnoses 
are based on evidence, and the best diagnosis should 
also be based on evidence and previous experience. The 
more prior experience a veterinarian has, the faster the 
diagnosis is made. The stronger the evidence, the more 
precise the veterinarian’s inference will be. Veterinary 
education needs a more formal recognition and utilization 
of BA in the veterinary curriculum. 
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Influenza A virus (IAV) infection in pigs is a concern to producers, veterinarians and the general public. 
This study presents models to estimate the sensitivities (Se) and specificities (Sp) of respiratory clinical 
signs (RCS), and real-time reverse transcription polymerase chain reaction (RRT-PCR) resulted from 
oral fluid (OF) and nasal swab (NS) samples in the absence of a gold standard. In addition, the models 
estimated an average prevalence of IAV infection in the Midwestern United States (US) growing pig 
populations. Bayesian model provided estimates under scenarios where IAV vaccination reduced only 
clinical manifestations, but not infection (basic model), or where vaccination reduced both. By the basic 
model, the Se and Sp of RCS from posterior distributions were 0.38 (95%Cridible interval (CrI): 0.28, 
0.48) and 0.66 (95%CrI: 0.61, 0.71). The Se and Sp of of RRT-PCR were 0.84 (95%CrI: 0.87, 0.90) and 0.93 
(95%CrI: 0.82, 0.97), and those of NS RRT-PCR were 0.79 (95%CrI: 0.71, 0.89) and 0.97 (95%CrI: 0.90, 
0.99) respectively. The true prevalence estimate of IAV infection in the Midwestern US growing pig 
populations was 0.24 (95%CrI: 0.16, 0.30). In the second scenario, the Se and Sp of RCS were reduced 
by vaccination whereas those of NS and OF-RRT-PCR were not reduced by vaccination. Depending on 
the prior knowledge of vaccination, the model (in the second scenario) estimated that vaccination 
reduced the true prevalence of IAV in growing pigs, and thereby this has broader implications for the 
control and perhaps eradication of IAV in growing pigs. 
 
Key words: Bayesian estimation, test accuracy, prevalence, influenza A virus, swine. 

 
 
INTRODUCTION 
 
Influenza A virus (IAV) is an enveloped-segmented, 
negative single-stranded RNA virus belonging to the 

family Orthomyxoviridae, including genera A, B, C, 
Togoviruses and Isavirus (Vincent et al.,  2008).  Most  of  
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the United States (US) swine population is endemically 
infected with Influenza A virus (Allerson et al., 2013a; 
Romagosa et al., 2011; Torremorell et al., 2012). IAV is 
considered one of the top three respiratory diseases in 
growing pigs and causes productivity losses in sows 
(Holtkamp et al., 2007). IAV infection while coinfected 
with other respiratory pathogens can aggravate the 
porcine respiratory disease complex (PRDC) (Deblanc et 
al., 2012; Fablet et al., 2012; Rose et al., 2013; Vincent et 
al., 2008). Clinical signs of infection with IAV are 
characterized by fever, sneezing, coughing, rhinorrhea 
and lethargy, and sometimes, conjunctivitis and 
oculonasal discharge (Reeth et al., 2012). The estimated 
cost of disease for IAV infection in market pigs ranges 
from $3.23 to 10.31/head (Donovan, 2008; Dykhuis et al., 
2012). 

Important control measures for IAV in pigs include 
surveillance, monitoring, prevalence estimation, and risk 
factor studies (Greiner and Gardner, 2000). The test 
accuracy (sensitivity, Se and specificity, Sp) is commonly 
determined through a comparison with a “gold standard,” 
which refers to a reference test with 100% Se and 100% 
Sp (Black and Craig, 2002) or with a reference test of 
known fixed values of Se and Sp under specified 
circumstances (Enøe et al., 2000).  

However, a gold standard test is not always applicable, 
nor does it exist for all tests. In addition, for a diagnostic 
test to be considered accurate under the gold standard, 
its Se and Sp, along with the expected prevalence values 
must be fixed, which may be incorrect when the state of 
disease is dynamic, which can result in potential biases in 
the reported estimates (Enøe et al., 2000). Furthermore, 
in field settings, there is also the issue of uncertainty 
attributed to differences between sampling strategies and 
tested populations (Greiner and Gardner, 2000), which 
do not account for sampling methodology (Joseph et al., 
1995), and the variability within and between herds 
(Davies, 2006; Enøe et al., 2000; Greiner and Gardner, 
2000). Changes in Se and Sp estimates, as a result, may 
occur and should be taken into account by researchers.  

Bayesian modeling, on the other hand, can fulfill such 
deficiencies by incorporating prior knowledge of test Se, 
Sp and unknown disease status (Enøe et al., 2000; 
Johnson et al., 2001). In addition, simultaneous posterior 
inferences about prevalence as well as Se and Sp of 
each diagnostic test are possible (Joseph et al., 1995). In 
the field of veterinary medicine, Bayesian modeling has 
been a popular method for estimating test accuracy for 
over fifteen years (Enøe et al., 2000; Paul et al., 2013; 
Praud et al., 2012; Toft et al., 2007). Test accuracy 
estimation is very important for the work of veterinarians 
and diagnosticians for surveilling and monitoring animal 
diseases. Currently, there is not a gold standard test  with  

 
 
 
 
100% Se and 100% Sp (perfect test) to compare for 
estimating the test accuracy of influenza A virus (IAV) via 
respiratory clinical signs (RCS), and nasal swabs (NS) 
and oral fluid (OF) RRT-PCRs in growing pigs. 

In a context where a gold standard or a reference test 
is absent, as deemed in this case, the study thus focus 
on using full Bayesian model as the main analytic tool to 
estimate parameters of Se, Sp and true prevalence. 
Therefore, the objectives of this study were: in scenario 
1: to estimate Se and Sp of RCS, and NS and OF RRT-
PCRs; to estimate the true prevalence using both RCS 
and NS, and in scenario 2: to understand how 
vaccination affects estimates of the test accuracy and 
true prevalence. 
 
 
MATERIALS AND METHODS 
 
Data sets 
 
This study utilized published data from two studies: a field study on 
active surveillance of swine influenza infection in growing pig 
populations in the Midwestern United States (US) (Corzo et al., 
2013) and an experimental challenge study of IAV in swine 
(Romagosa et al., 2012) (Table 1).  

In the first study, 16,170 nasal swabs were collected from 540 
groups (30 nasal swabs per group), and RCS was observed in 
whole groups of growing pigs from 32 farms between 2009 and 
2011 as part of an active Midwestern US surveillance program for 
IAV. A group was considered positive if at least one of the 30 nasal 
samples tested positive by RRT-PCR (Corzo et al., 2013a). RCS 
was observed for 3 min after pigs had been forced to stand up for at 
least a minute. If at least one pig in the group exhibited coughing, 
sneezing or nasal discharge, “presence” of respiratory clinical signs 
was documented. If no clinical signs were notable, “absent” was 
noted (Corzo et al., 2013; Rose et al., 2013; Vincent et al., 2008). In 
the second study, 105 pen-based samples of oral fluids were 
collected. A group was considered positive when at least one of the 
10 nasal samples tested positive (Romagosa et al., 2012). 

For the purpose of this study, from here onwards, the word “herd” 
is used to refer to any group of 3 to 30 week-old pigs housed in 
finishing farms located in the Midwestern US during the time of the 
study conducted, and any room of three week-old pigs housed in 
the research animal units at the University of Minnesota. Growing 
pigs in the same farm but from different visits were considered a 
distinctive “herd.” 
 
 
Bayesian model 
 
Prior information  
 
Beta probability densities were used as prior distributions for 
parameters: Se and Sp of RCS, Se and Sp of OF and NS RRT-
PCR and the prevalence and the probability of a swine herd being 
endemic for IAV. Such beta prior distributions can be accomplished 
using past data, if available; by examining published values from 
previous studies; by drawing from expert opinion; alternatively, by 
combining all of these options (Joseph et al., 1995; Suess et al., 
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Table 1. Diagnostic test results from a field setting (RCS versus NS RRT-PCR) with unknown prevalence and from an 
experimental study (OF versus NS RRT-PCR) with known prevalence. 
 

NS RRT-PCR 

Result 

Field setting unknown 
prevalence 

 
Experimental setting known 

prevalence 
 

RCS 
Total 

OF RRT-PCR 
Total 

Present Absent Positive Negative 

Positive 43 74 117 37 9 46 
Negative 144 279 423 0 59 59 
Total 187 353 540 37 68 105 

 
 
 
2002) All beta priors were assumed to be independent (Cowling et 
al., 1999). 
 
1. The prior Se and Sp of RCS have not been published. Hence, 
the study employed non-informative priors.  
2. The prior Se and Sp of OF RRT-PCR results were illustrated at a 
group-based level while the NS RRT-PCR results were 
demonstrated at an individual level and were elicited elsewhere 
(Goodell et al., 2013). 
3. The prevalence of IAV infection in the US swine herd was 29% 
with a standard deviation of 13% (Choi et al., 2002; Olsen et al., 
2000). 
4. The probability of endemic IAV in a swine herd was based on 
past history, and was considered endemic throughout the year, 
implying that at least one swine herd is infected with IAV each 
month (Olsen et al., 2000).  
 
All prior distributions were implemented in scenario 1 (the basic 
model). To understand the effects of vaccination on the test 
accuracy and the true prevalence, the second scenario was 
modeled, where vaccination protects against infection, and the 
prevalence was proportional to vaccine effectiveness. Vaccine 
effectiveness and the prevalence proportional to vaccine 
effectiveness were estimated using the experimental study data 
(Romagosa et al., 2012). Vaccine effectiveness was estimated by 
one minus the odds ratio (OR), where % Effectiveness = (1-
OR)x100 (Weinberg and Szilagyi, 2010). The OR was estimated 
using a binomial regression model. 

To convert the elicited prior values of Se and Sp (RCS, OR and 
NS RRT-PCR), and the prevalence to the prior Beta distributions, 
the Parameter Solver v3.01 was used by matching the closest fitting 
Beta probability distributions. Parameter Solver computed the Beta 
distribution parameters with 95% lower and upper percentiles of the 
distribution, and graphed the results of those Beta distributions 
(Table 2).  
 
 
Sensitivity analysis of the prior distribution 
 
Since the duration of infection affects the Se (Greiner and Gardner, 
2000), this study categorized the priors into three groups based 
upon this study initial assumptions: if samples were taken within 
one week of infection, if samples were taken within two weeks of 
infection and if samples were taken without any information on the 
course of infection. The prior distributions were that the prior Se OF 
and NS RRT-PCR were between 0.77 and 0.92, and between 0.75 
and 0.90, respectively. The prior Sp OF and NS RRT-PCR results 
were between 0.80 and 0.97, and between 0.80 and 0.99, 
respectively. The prior distribution were that the prior Se of OF and 
NS RRT-PCR results were between 0.08 and 1.00, and between 

                                                            
1 Available at http://biostatistics.mdanderson.org/SoftwareDownload/ 

0.00 and 1.00 (Goodell et al., 2013). The non-informative prior Beta 
Se of OF and NS RRT-PCR results were employed. Because of the 
lack of information regarding variability and point estimate of the 
test Sp of NS and OF RRT-PCR, non-informative priors were used 
instead. 
 
 
Assumptions 
 
Due to the absence of a gold standard, two populations were used 
to estimate test accuracies. In the first population, this study tested 
two approaches: RCS relying on visual observation of clinical 
outcomes, which is a subjective measure, while NS RRT-PCR and 
RNA-based technique is an objective measure. Given such 
conditions, the conditional independence assumption was used for 
this modeling. Alternatively, the conditional dependent assumption 
between RCS and NS RRT-PCR was modeled to compare the 
previous assumption. In the second population, the study compared 
the NS and OF RRT-PCR results, which are both a RNA-based 
technique and an objective measure. Conditional dependence 
assumption was used for modeling the second population 
(Branscum et al., 2005; Enøe et al., 2000; Gardner et al., 2000). 
Other two assumptions were included in order to jointly model 
accuracy of NS RRT-PCR between two populations (field versus 
experiment). First, the test accuracy of NS RRT-PCR was assumed 
to be equal and second, assumed to be unequal across field and 
experiment populations (Bouwknegt et al., 2008; Branscum et al., 
2005; Johnson et al., 2001). The 4 combined assumptions were 
made, and the models run to investigate a final model. The final 
model was selected using a deviance information criterion (DIC), 
which is described in the next section. 
 
 
Bayesian computation 
 
Bayesian Markov Chain Monte Carlo (MCMC) computation was 
performed using Gibbs sampler in JAGS 3.4.0 (Plummer, 2013) and 
constructed following previously described methods (Branscum et 
al., 2005; Geurden et al., 2008; Nérette et al., 2008; Toft et al., 
2005). The detailed model structure is included (Table 4, Appendix 
A) as well as a conceptual model with Directed acyclic graph 
(Figure 1). The JAGS model codes were written in R v3.2.0 (R Core 
Team, 2015) The “rjugs” and “R2 jags” packages were used as an 
add-on for calling JAGS from R to perform Gibbs sampling 
(Plummer, 2015; Su and Yajima, 2015). The analysis of MCMC 
chains and graphics was performed by using the “CODA," 
“ggmcmc” and “ggplots2”packages (Hadley, 2009; Marin, 2013; 
Plummer et al., 2006).  

In all analyses, 250,000 iterations with 3 chains of Gibbs 
samplers were run, where the first 5,000 iterations were discarded. 
Sampling thinning was applied by taking 5 samples from the 
posterior distribution of applicable parameters. The convergence of 
the   three   chains   was   assessed   by   visual   inspection    using  



320          J. Vet. Med. Anim. Health 
 
 
 
Table 2. Description of the prior distribution for Se and Sp of RCS, OF and NS RRT-PCR, and prevalence in field and experimental 
populations. 
  

Variable Parameters1 Median 95% CrI2 SD Distribution Reference 

RCS ηc 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
- θc 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
       
Time-of-sampling within 1 week of infection 
OF RRT-PCR ηo 0.83 0.75-0.99 0.03 Beta (77.85,15.75) Goodell et al.(2013) 
- ηo 0.95 0.80-0.97 0.03 Beta (39.97,4.34) Non-informative 
NS RRT-PCR ηn 0.88 0.77-0.92 0.03 Beta (71.23,12.28) Goodell et al. (2013) 
- θn 0.97 0.80-0.99 0.05 Beta (24.75,2.03) Goodell et al. (2013) 
       
Time-of-sampling within 2 weeks of infection 
OF RRT-PCR ηo 0.68 0.08-1.00 0.28 Beta (1.22,0.60) Goodell et al. (2013) 
- θo 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
NS RRT-PCR ηn 0.56 0.00-1.00 0.38 Beta (0.38,0.34) Goodell et al. (2013) 
- θn 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
       
Unknown course of infection 
OF RRT-PCR ηo 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
- θo 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
NS RRT-PCR ηn 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
- θn 0.50 0.03-0.98 0.08 Beta (1,1) Non-informative 
       
Field 
prevalence 

πf 0.29 0.06-0.55 0.13 Beta (2.7,7.68) 
Choi et al. (2002) Olsen et 
al. (2000) 

Experimental 
prevalence 

πe 0.92 0.80-0.99 0.01 Beta (24.75,2.04) 
Romagosa et al. (2012) 

- - 0.17 0.14-0.12 0.01 Beta (100.9,496.4) 
 
1η denoted sensitivities of RCS c, of OF o and of NS n RRT-PCR, 1θ denoted specificities of RCS c, of OF o and of NS n RRT-PCR, 1π denoted the 
true prevalence of field setting, f and of experimental setting e, 2CrI denoted a credible interval. 
 
 
 
Traceplots, Gelman-Rubin R-hat (Potential Scale Reduction Factor) 
and diagnostic Geweke z-score plots (Gelman and Rubin, 1992; 
Geweke, 1991). The analysis was repeated, and the results were 
virtually identical, with relatively low Monte Carlo errors (<5%). In 
addition, autocorrelation monitoring was assessed by the draws of 
the corresponding Markov chains. MCMC sample median was 
presented as a point estimate while the 2.5 and 97.5 percentiles 
were presented as 95% credible intervals (CrI). 

Individual outliers and the reasonableness of the prior 
assumption were checked using Bayesian p-value (positive 
predictive check), which is the predictive probability of having an 
extreme value, and measure goodness of fit the model, which is 
close to 0.5 (0.06-0.94) as possible (Carlin and Louis, 2008; 
Geurden et al., 2008; Lunn et al., 2012). Model selection was based 
upon DIC, where the smaller DIC is preferred and a difference of 5 
is substantially better. A DIC difference exceeding 10 is considered 
to be an event more of a significant better fit (Carlin and Louis, 
2008; Spiegelhalter et al., 2002). 

Sensitivity analyses in the final model were investigated for the 
prior distributions introduced as a reflection of uncertainty about 
knowing time-of-sampling (Garthwaite et al., 2005), by changing the 
prior Beta distributions of time-of-sampling, within 1 or 2 weeks, or 
no information regarding the course of infection as mentioned in the 
previous session (Prior information) accompanied with scenario 1 
and 2 (Figure 2). In summary, after selecting the final model  (based 

on DIC), the models were run six times in total. 

 
 
RESULTS 
 
Diagnostic test results with two populations from the field 
setting (RCS versus NS RRT-PCR) with unknown 
prevalence, and from the experimental study (OF versus 
NS RRT-PCR) with known prevalence was shown as 2x2 
table. The vaccine effectiveness against infection was 
98.62% (95%CI: 92.96-99.73%), which was estimated 
from the experimental setting. NS RRT-PCR was tested 
in both populations and accuracy of that test assumed to 
be equal was held. The assumption of conditional 
independence between RCS and NS RRT-PCR was 
modeled. The final model was selected using DIC of 42.2 
(based on parsimony since it was the simplest model) 
(Table 3 and 4). Bayesian p-value of 0.88 for the final 
model supports the suitability of the assumptions.  

As a basic scenario model (scenario 1), posterior 
estimates were calculated (Table 5).  The  Se  and  Sp  of 
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Figure 1. A conceptual model representing scenarios of (a) a vaccination that prevents RCS (Basic scenario) or (b) a 
vaccination that prevents against infection. For each scenario, three priors were implemented with regard of prior 
information of time-of-sampling within 1 or 2 weeks, or no information concerning the course of infection. 

 
 
 

 
 
Figure 2. A probability distribution represents herd prevalence of IAV infection in the Midwestern US growing pig populations, the x-
axis representing herd-level prevalence. The probability distribution was generated from three MCMC chains with 250,000 with 
5000 discarded each chain. 
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Table 3. Deviance information criterions (DIC) for four assumptions. 
 

Assumptions 
DIC1 pD Deviance Conditional independent of RCS and 

NS RRT-PCR 
Accuracy of NS RRT-PCR was assumed to be equal 
across two populations 

Yes Yes 42.2 7.5 34.67 
No Yes 42.8 7.9 34.89 
Yes No 43.4 8.4 35.05 
No No 43.7 8.5 35.18 
 
1DIC= Deviance+ pD. 
 
 
 

Table 4. Final Bayesian model was selected by Deviance 
information criteria to estimate Se and Sp of RCS and OF as well as 
NS RRT-PCR and prevalence. The conditional independence 
assumption for accuracy of RCS and NS RRT-PCR was modeled 
and accuracy of RCS and NS RRT-PCR was assumed to be equal 
across two populations held. 
 
Population i Probability1 Structure of the model2

1 

Conditionally independent3 
p111 π1η1η2+(1-π1)(1-θ1)(1-θ2) 
p112 π1η1(1-η2)+(1-π1)(1-θ1)θ2 
p121 π1(1-η1)η2+(1-π1)θ1(1-θ2) 
p122 π1(1-η1)(1-η2)+(1-π1)θ1θ2 

   

2 

Conditionally dependent 
p211 π2[η1η3+γη]+(1-π1)[(1-θ1)(1-θ3)+γθ] 
p212 π2[η1(1-η3)-γη]+(1-π2)[(1-θ1)θ3-γθ] 
p221 π2[(1-η1)η3-γη]+(1-π2)[θ1(1-θ3)-γθ] 
p222 π2[(1-η1)(1-η3)+γη]+(1-π2)[θ1θ3+γθ] 

 
1pi11 is the probability of both tests 1and 2 positive in population I, 1pi12 is 
the probability of test 1 positive with test 2 negative in population I, 1pi21 
is the probability of test 1 negative with test 2 positive in population I, 
1pi22 is the probability of both test 1 and 2 negative in population I, 2π1 is 
the true prevalence of influenza infection in field setting (unknown), 2π2 

is the prevalence of influenza infection in experimental study (known), 
2η1 and θ1 represents the Se and Sp of NS RRT-PCR test, 2η2 and θ2 
represents the Se and Sp of RCS, 2η3 and θ3 represents the Se and Sp 
of OF RRT-PCR test, 2γη is the covariance (conditional covariance 
positive) between two sensitivity of the test (NS RRT-PCR versus OF 
RRT-PCR), 2γθ is the covariance (conditional covariance negative) 
between two specificity of the test (NS RRT-PCR versus OF RRT-
PCR),3Conditional covariance assumptions of the tests given the latent 
true disease status. 

 
 
 
RCS were 0.38 and 0.66. The Se and Sp of OF RRT-
PCR results were 0.84 and 0.93 while Se and Sp for the 
NS RRT-PCR results were 0.79 and 0.97. A posterior 
median estimate of the true IAV prevalence was 0.24 in 
the Midwest US growing pig populations (based on 
16,170 of NS RRT-PCR and 540 groups of RCS for the 
filed setting data) and the true prevalence estimate was 
not influenced by the prior information (Figure 2). The Se 
posterior correlation medians between OF and NS RRT-
PCR were 0.68, assuming conditional dependence. The 
Sp posterior correlation median between OF and NS 
RRT-PCT was 0.70, assuming conditional dependence. 
The posterior positive predictive kappa estimates of the 

OF and NS RRT-PCR tests were approximately 0.72, 
which indicated high agreement between the OF and NS 
RRT-PCR (Table 5).  

To estimate the effects of vaccination on the test 
accuracy and the true prevalence, scenario 2 was 
constructed assuming vaccination prevents IAV infection, 
and sequentially both prior prevalence and RCS 
characteristics would be reduced. Posterior estimates 
were computed, and the Se of RCS was 0.3 (Table 6). 
The Sp accuracy estimate was not improved among time-
of-sampling. The Se of NS RRT-PCR test was 
moderately decreased by time-of-sampling (0.97, 0.95, 
and 0.81). Similarly,  the  Sp  of  NS  RRT-PCR  test  was  
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Table 5. Description of the first sceincario3 of the posterior distributions for the test sensitivity, specificity, prevalence, correlation and 
kappa. 
  

Variable Parameters1 

Sensitivity analysis (Time-of-sampling) 

Within 1 week of infection  Within 2 week of infection  Unknown course of infection 

Median SD 95% CrI  Median SD 95% CrI  Median SD 95% CrI 

RCS ηc 0.38 0.05 0.28, 0.48  0.36 0.24 0.03, 0.93  0.36 0.24 0.04, 0.93 
- θc 0.66 0.03 0.61, 0.71  0.82 0.07 0.69, 0.97  0.82 0.07 0.70, 0.97 
             
OF RRT-PCR ηo 0.84 0.03 0.78, 0.90  0.37 0.05 0.27, 0.48  0.37 0.05 0.28, 0.47 
- θo 0.93 0.04 0.82, 0.97  0.81 0.22 0.16, 0.99  0.80 0.22 0.15, 0.99 
             
NS RRT-PCR ηn 0.79 0.04 0.71, 0.89  0.44 0.05 0.35, 0.58  0.44 0.05 0.35, 0.54 
- θn 0.97 0.03 0.90, 0.99  0.68 0.04 0.61, 0.78  0.68 0.04 0.62, 0.78 
             
Prevalence πf 0.24 0.04 0.16, 0.30  0.25 0.12 0.06, 0.54  0.23 0.13 0.57, 0.54 
Correlations2 ρη 0.68 0.15 0.34, 0.93  0.18 0.50 -0.73, 0.84  0.18 0.73 -0.75, 0.83 
- ρθ 0.70 0.15 0.33, 0.93  0.82 0.06 0.70, 0.93  0.82 0.06 0.70, 0.93 
             
Kappa2 κη 0.72 0.20 0.35, 0.92  0.81 0.07 0.67, 0.93  0.81 0.06 0.67, 0.93 
- κθ 0.41 0.23 -0.20, 0.83  0.13 0.33 -0.51, 0.83  0.13 0.33 -0.51, 0.83 

 
1η denoted sensitivities of RCS c, of OF o and of NS n RRT-PCR, 1θ denoted specificities of RCS c, of OF o and of NS n RRT-PCR,1πf denoted the 
true prevalence in a field setting, 1ρ denoted correlations of sensitivity η and specificity θ between OF and NS RRT-PCR tests, 1κ denoted kappa 
statistics for sensitivity η and specificity θ, 2Calculated from tests between OF and NS RRT-PCR tests in population 2 with conditionally dependent 
model, 3Model was run under the scenario that vaccination protects RCS but does not protect against infection, 3The prior prevalence distribution of 
the experimental study was followed πe~Beta(24.75, 2.04). 

 
 
 
Table 6. Description of the second sceincario3of the posterior distributions for the test sensitivity, specificity, prevalence, correlation and 
kappa. 
  

Variable Parameters1 

Sensitivity analysis (Time-of-sampling) 

Within 1 week of infection  Within 2 week of infection  Unknown course of infection 

Median SD 95% CrI  Median SD 95% CrI  Median SD 95% CrI 

RCS ηc 0.30 0.18 0.05, 0.80  0.30 0.19 0.05, 0.83  0.31 0.21 0.03, 0.88 
- θc 0.79 0.02 0.75, 0.83  0.79 0.02 0.75, 0.84  0.79 0.05 0.71, 0.91 
             
OF RRT-PCR ηo 0.95 0.09 0.65, 0.99  0.83 0.19 0.32, 0.99  0.57 0.27 0.05, 0.96 
- θo 0.79 0.05 0.70, 0.89  0.77 0.05 0.67, 0.87  0.67 0.06 0.61, 0.85 
             
NS RRT-PCR ηn 0.97 0.04 0.79, 0.99  0.95 0.12 0.60, 0.99  0.81 0.25 0.18, 0.99 
- θn 0.71 0.04 0.65, 0.80  0.70 0.04 0.64, 0.79  0.68 0.05 0.55, 0.77 
             
Prevalence π 0.09 0.05 0.02, 0.21  0.09 0.05 0.02, 0.22  0.11 0.11 0.02, 0.44 
Correlations2 ρη 0.74 0.10 0.53, 0.91  0.79 0.10 0.57, 0.97  0.83 0.09 0.63, 0.97 
- ρθ 0.20 0.24 -0.02, 0.82  0.18 0.26 -0.11, 0.82  0.31 0.61 -0.40, 0.89 
             
Kappa2 κη 0.14 0.24 -0.02, 0.82  0.12 0.25 -0.06, 0.82  0.25 0.37 -0.25, 0.89 
- κθ 0.73 0.11 0.48, 0.91  0.78 0.12 0.52, 0.96  0.83 0.10 0.60, 0.98 

 
1η denoted Se of RCS c, of OF o and of NS n RRT-PCR, 1θ denoted specificities of RCS c, of OF o and of NS n RRT-PCR,1πf denoted the true 
prevalence in a field setting, 1ρ denoted correlations of sensitivity η and specificity θ between OF and NS RRT-PCR tests, 1κ denoted kappa 
statistics for sensitivity η and specificity θ, 2Calculated from tests between OF and NS RRT-PCR tests in population 2 with conditionally dependent 
model, 3Model was run under the scenario that vaccination protects against an infection for IAV, 3The prior prevalence distribution of the 
experimental study was followed πe~Beta (100.9, 496.4). 

 
 
 
delicately decreased (0.71, 0.70, and 0.68). Posterior 
median estimates of the true prevalence were 

approximately at 0.10 and strongly influenced by the level 
of   infection   changed   by    vaccination.  The   posterior  
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correlation of the test Se of OF and NS RRT-PCR was 
0.80. The posterior correlation of the test Sp of OF and 
NS RRT-PCR was 0.20. The posterior predictive kappa 
estimates between the OF and NS RRT-PCR tests were 
incongruous (0.14, 0.12 and 0.25). The posterior 
predictive kappa estimates were substantial (0.73, 0.78) 
and uncovered a high level of agreement (0.83), which 
indicated high agreement between the OF and NS-RRT-
PCR (Table 6). 

With sensitivity analysis, the priors of the test accuracy 
(varied by time-of-sampling) were reviewed from Goodell 
et al. (2013), and used for non-informative priors. The 
accuracy of RCS and the prevalence, correlation, and 
kappa, were not changed by time-of-sampling 
assumption. The accuracy of OF and NS-RRT-PCR was 
slightly reduced from one week to two weeks, but two 
weeks was similar to no information. Thus, any 
imprecision arising in the prior distributions associated 
with fitting parametric distribution was not a major 
concern. 
 
 
DISCUSSION 
 
IAV infection in pigs is a major concern to producers, 
veterinarian and general public. Especially, IAV infection 
by other pathogens in growing pigs plays a crucial role in 
the porcine respiratory complex. Having accurate, rapid, 
easy, and practical on-farm tests is necessary for 
epidemiological and monitoring purposes. To the best of 
this study knowledge, this is the first report that estimates 
the Se and Sp of RCS associated with IAV infection in 
growing pigs using Bayesian model. The current Se and 
Sp estimates of RCS were 0.38 (95% CrI: 0.28, 0.48) and 
0.66 (95% CrI: 0.61, 0.71), indicating RCS is not a 
reliable test for detecting IAV infections.  

These results are consistent with a previous study by 
Allerson et al. (2013b), which found that influenza virus 
can be detected in pigs without having RCS. In this case, 
RCS creates false-negative results (Se=0.38). The 
absence of RCS at the individual level cannot rule out 
IAV infection. However, at the population level, Se may 
be improved, but may still provide false-negative results. 
In addition, infection with other non-influenza respiratory 
pathogens could generate false-positive RCS results 
(Sp=0.66). Being a subjective observation, the accuracy 
of RCS may differ between observers, but this could be 
minimized by training (Baadsgaard and Jørgensen, 
2003). 

Times of IAV infection and sampling are major factors 
affecting the test accuracy. To assess such accuracy, the 
sensitivity analysis of the prior distributions was 
conducted to investigate deviations of the test accuracy. 
This reflects the assumptions of time-of-sampling 
affecting the test accuracy but not in other estimates such 
as the prevalence, correlation, and kappa. For example, 
the Se  of  OF  RRT-PCR  test  largely  decreased  (0.84, 

 
 
 
 
0.37 and 0.37) while the Sp was slightly lower (0.93, 0.81 
and 0.80). This finding indicates that the Se decreased 
dramatically, while the Sp decreased slightly in relation to 
time-of-samples (within 1 and 2 weeks of infection, and 
unknown course of infection, respectively). The 
determination of appropriate sampling time (providing the 
highest accuracy) may be difficult in practice. Regardless 
of test limitations, sampling at several sites during the 
same period of time should be performed to increase Se. 
As sampling variability may occur, different sampling 
methods may affect the test accuracy and the prevalence 
estimate.  

Therefore, the IAV prevalence estimates may be 
inconsistent during a period of sampling. Likewise, with a 
method of sampling, Allerson et al. (2013a) indicated that 
the prevalence estimated by targeted sampling of pigs 
displaying RCS may be slightly overestimated compared 
to simple random sampling (Allerson et al., 2013b). One 
benefit of targeted sampling includes being able to 
conduct a herd diagnosis with fewer samples, making it a 
more cost-effective way to improve Se without 
decreasing the Sp (Christensen and Gardner, 2000). 

In veterinary medicine, the conditionally dependent 
model should be considered first when modeling, and 
failing to allow models to be conditionally dependent will 
introduce bias in the estimate should be considered first 
when conducting analysis (Gardner et al., 2000; Toft et 
al., 2005). Based on those researches, the study four 
model assumptions were followed. For example, the 
conditional independence and dependence between RCS 
and NS RRT-PCR were modeled. The test accuracy of 
NS RRT-PCR was assumed to be equal across two 
populations (field and experiment settings). By using a 
DIC selection criterion, the study modeled the two tests 
as conditionally independent (RCS versus NS RRT-PCR) 
and conditionally dependent (OF versus NS RRT-PCR). 
The models allow correlations between OF and NS RRT-
PCR tests to be positive or negative. In addition, the test 
accuracy of NS RRT-PCR was equal across field and 
experiment settings.  

The current Se and Sp estimates of NS RRT-PCR were 
0.79 (95%CrI: 0.71, 0.89) and 0.97 (95%CrI: 0.90, 0.99), 
respectively within the first week of infection. However, 
after one week of infection, the accuracy of NS RRT-PCR 
dropped to 0.44, which is quite low. This result could 
have happened because of a reduction in transmission of 
nose-to-nose contact after one week of infection. Even 
though IAV virus can be found in nasal secretion of 
positive pigs (Corzo et al., 2013b), a previous report 
showed that pigs can shed virus thought nasal secretion 
for 5 to 7 days (Mohan et al., 1981),  which can be 
resulted in reducing the accuracy of NS RRT-PCR. The 
Se and Sp estimates of NS RRT-PCR may be lower than 
expected because the estimates obtained from 
experimental studies may overestimate the particular test 
performance compared with the field setting (Davies, 
2006).  



 
 
 
 

On the other hand, the test accuracy obtained from a 
field setting may underestimate the test performance 
since some of the variables cannot be controlled. For 
instance, viral titers in samples can affect the estimates 
differently. The test accuracy should not be extrapolated 
only from the experimental setting and then applied in the 
field settings. Since both experimental and field setting 
data was used, the study current estimates were 
strengthened, which result in more accurate estimates. 

In the field setting, the status of IAV infection in 
Midwestern US growing pig populations was unknown. 
The true prevalence of IAV infection was estimated at 
0.24 (95%CrI: 0.16, 0.30) using Bayesian model, which 
incorporated prior knowledge regarding the prevalence of 
IAV infection (Choi et al., 2002; Olsen et al., 2000; Poljak 
et al., 2008).This estimate was consistent regardless of 
sampling time and consistent with previous research, 
which reported that the sero-prevalence of IAV in HI test 
was 0.22 (Choi et al., 2002). This study contained a large 
sample size, consisting of 111,418 samples submitted to 
the University of Minnesota Veterinary Diagnostic 
Laboratory.  

However, the study prevalence estimate was based on 
16,170 of NS-RRT-PCR and 540 groups of RCS. In 
Canada, the IAV prevalence was reported as 0.47 in 
finishing pigs in the province of Ontario (Poljak et al., 
2008). A similar study conducted in the same province 
reported that in 2004 the prevalence for H1N1 and H3N2 
was 0.13 and 0.27 respectively. The following year, the 
prevalence for H1N1 increased to 0.15. The increase for 
H3N2, on the other hand, was more dramatic since the 
estimate was 0.26 (Poljak et al., 2008). The prevalence of 
IAV infection in the Midwestern US growing pig 
populations seems to be similar to findings from Choi and 
colleagues’ study in 2002 and ours in 2011, where a year 
of samples was taken. 

Based upon this study estimates, the study speculate 
that inspection of RCS would have lower utility compared 
to pen-based oral fluid testing within first week of 
infection. However, in the second week of infection, the 
Se of OF RRT-PCR decreased to 0.37 while the Sp of 
RCS increased to 0.82 (Table 5), which seems 
comparable to weeks 2 and 3. A similar characteristic 
was also found in scenario 2 (Table 6). If RCS is used for 
monitoring IAV infection in swine herds, it will create 
more false-negative results in an endemic herd. As et al. 
(2013) reported, positive growing pigs may not exhibit 
RCS (Allerson et al., 2013b). To implement RCS as a 
monitoring system in a swine herd, more studies are 
needed to evaluate the frequency of this observation, 
including a minimum number of pigs observed, and the 
economic costs associated with testing to justify having 
RCS observations and to obtain the precise and 
improved estimates of Se and Sp. The advantages of 
RCS as a monitoring system, along with other diagnostic 
tests for a group-based population, are low-cost and can 
be easily used on a farm.  

However, RCS    may   be   less   accurate   in  vaccinated 
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herds as sick pigs might endure illness, leading to 
“hidden” respiratory subclinical signs. In the cases of an 
acute infection, a change in the behavior because of 
fever or lethargy can reduce their likelihood to exhibit 
RCS and may increase Se. Such behavior needs to be 
further investigated to improve the precise estimate. 
 
 
Conclusion 
 
Bayesian model was employed to estimate the Se and 
Sp of IAV infection using RCS and NS and OF RRT-PCR 
applied to the Midwestern US growing pig populations. 
Observation of RCS is easy, affordable and safer for 
personnel as compared with the collection of NS and OF. 
However, the accuracy of RCS in the first week was 
lower than OF and NS RRT-PCR, but in the second 
week, the accuracy of RCS increased and was 
comparable to OR and NS RRT-PCR.  RCS may 
potentially be used as measurement to estimate true 
prevalence of IAV infection (given its imperfect accuracy 
test) but may not be sufficient to be used as a diagnostic 
tool. The accuracy of RCS was reduced by vaccination 
but the accuracy of NS and OF-RRT-PCR was 
insignificantly reduced by vaccination. 
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Appendix A 
 
Bayesian model, namely yijk~ multinomial(ni, (pi11, pi12, pi21, pi22)), was constructed to estimate Se and Sp of RCS, NS 
and OF RRT-PCR tests with a sample size of ni in population i for i=1, 2. The conditional independent model was 
constructed for RCS versus NS RRT-PCR tests. The NS versus OF RRT-PCR tests comparison was modeled as 
conditionally dependent. With the conditionally dependent model, the conditional covariance between the two (NS 
versus OF RRT-PCR tests) test Se, γη, and Sp, γθ, were modeled as descripted elsewhere (Dendukuri and Joseph, 
2001). The corresponding correlations, ρη, ρθ, were calculated. The unobserved stochastic nodes are referred to as the 
parameters of the model. Furthermore, we modeled the kappa statistic by using equations from elsewhere which are 

represented by:  ,  (Gardner et al., 2000), where ,  , were 

predictors for infected and non-infected populations respectively. 
 
 
Appendix B 
 
A conceptual model with directed acyclic graph (Figure 1) represents Bayesian model. The model estimates Se (eta) 
and Sp (theta) of RCS, NS and OF RRT-PCR tests. Ellipses are stochastic nodes. Grey and white nodes are observed 
variables and model parameters respectively. Rectangles are constant process of the experimental design. Dark and 
light arrows present deterministic and stochastic dependencies, respectively. There were 2 populations (i=1, 2) that are 
the populations in the field study and in the experimental study. The Y[i,j,k] are realizations of observed positive/negative 
counts in population i for test 1(j=1:positive, 2:negative) and test 2 (k=1:positive, 2:negative). p[i,j,k] represents the 
probability of a test positive/negative in population i where p[i,1,1] is the probability of both tests 1 and 2 positive. p[i,1,2] 
is the probability of test 1 positive with test 2 negative. p[i,2,1] is the probability of test 1 negative with test 2 positive. 
p[i,2,2] is the probability of both test 1 and 2 negative in population i. The pi[1] is the prior prevalence of infection in the 
field study population. The pi[2] is the prior prevalence of infection in the experimental study population. The eta[] and 
theta[] are Se and Sp. The gamma[eta] is the correlation between Se of NS versus OF RRT-PCR tests and 
gamma[theta] and the correlation between Sp of NS versus OF RRT-PCR tests. The kappa[eta] is the kappa statistic 
between Se of NS versus OF RRT-PCR tests and kappa[theta] is the kappa statistic between Sp of NS versus OF RRT-
PCR tests. Psi (ψ) is the probability of influenza A being endemic (Figure 1).  
 
 
Appendix C 
 
With conditional dependent assumption, Se of the OF and NS RRT-PCR are conditionally dependent with γη (conditional 
covariance positive) and Sp of those are conditionally dependent with γθ (conditional covariance negative). In the Table 
4, γη and γθ must be range between zero and one since it is elements of the probability. It can be expressed as: 
 
max[-(1- η1)(1- η3), - η1η3] ≤ γη ≤ min [η1(1- η3), η1(1- η3)] and, max[-(1- θ1)(1- θ3), - θ1θ3] ≤ γθ ≤ min [θ1(1- θ3), θ1(1- θ3)]. 
 
Where η1 and θ1 represents the Se and Sp of NS RRT-PCR test and η3 and θ3 represents the Se and Sp of OF RRT-
PCR test. 
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